Volume 3, Issue 1, March 2019, Page: 24-29
Selection of Entomopathogenic Nematodes to Control Nymphs of Haplaxius crudus (Van Duzee) (Hemiptera: Cixiidae)
Miriam Rosero Guerrero, Colombian Oil Palm Research Center, Paratebueno, Colombia
Alex Enrique Bustillo Pardey, Colombian Oil Palm Research Center, Bogotá, Colombia
Received: Jan. 29, 2019;       Accepted: Mar. 20, 2019;       Published: May 15, 2019
DOI: 10.11648/j.aje.20190301.14      View  48      Downloads  10
Haplaxius crudus transmits the pathogen that causes Lethal wilt (ML for its name in Spanish), one of the main diseases that affects oil palms in Colombia. In its nymphal stage it feeds from grasses present at the plantations, and adults feed on oil palm leaves. With the objective of controlling the nymphal stage of H. crudus, the effectiveness of the following entomopathogenic nematodes was assessed: Steinernema colombiense, S. websteri, Steinernema sp. 1, Steinernema sp. 2, Heterorhabditis bacteriophora, Heterorhabditis sp. (Gua 31), Heterorhabditis sp. (Gua 236), Heterorhabditis sp. (CPHsp1301) and Heterorhabditis sp. (CPHsp1302). Pathogenicity was assessed under laboratory conditions using Petri dishes with roots of Paspalum virgatum. Virulence was assessed using mesh houses with PVC tubes and plastic trays with P. virgatum. Once the most virulent nematode was selected, three dosage levels were assessed under simulated field conditions, in order to select the most effective dosage. All assessed nematode species were pathogenic to nymphs of H. crudus, and nymph stage IV was the most susceptible stage, with death rates of over 80%. Regarding virulence, there were statistically significant differences among treatments (P≤0.05), producing nematode death rates between 28.3 and 88.2%. Heterorhabditis sp. (CPHsp1301), obtained from the soil of palm plantations, was selected because it caused a mortality rate of 78.4% with at a dosage of 1300 IJ/cm2 in the sprayed area. The results are promising and further research should be performed under commercial oil palm plantation conditions.
Oil Palm, Biological Control, Steinernema, Heterorhabditis
To cite this article
Miriam Rosero Guerrero, Alex Enrique Bustillo Pardey, Selection of Entomopathogenic Nematodes to Control Nymphs of Haplaxius crudus (Van Duzee) (Hemiptera: Cixiidae), American Journal of Entomology. Vol. 3, No. 1, 2019, pp. 24-29. doi: 10.11648/j.aje.20190301.14
Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
TORRES, E.; TOVAR, J. 2004. Estudio epidemiológico de la enfermedad marchitez letal de la palma de aceite en plantaciones de Villanueva, Casanare. Palmas (Colombia) 25 (2): 210-211.
ARANGO, M.; OSPINA, C.; SIERRA, J.; MARTÍNEZ, G. 2011. Myndus crudus: vector del agente causante de la marchitez letal en palma de aceite en Colombia. Palmas (Colombia) 32 (2): 13-25.
HOWARD, F.; GALLO, S. 2006. El cixíido americano de las palmas, Myndus crudus Van Duzee (Insecta: Hemiptera: Auchenorrhyncha: Fulgoroidea: Cixiidae). University of Florida- IFAS Extensión. 10 p.
SIERRA, M. L. J.; BUSTILLO, P. A. E.; ROSERO, E. G. A.; GUTERREZ, H. J.; MARTINEZ, P. J. A. 2014. Plantas hospederas del vector de la Marchitez letal, Haplaxius crudus, en plantaciones de palma de aceite. Ceniavances (Colombia) 177: 1-4.
HOWARD, F. W. 2015. American palm cixiid - Myndus crudus Van Duzee. Featured Creatures. University of Florida. http://entnemdept.ufl.edu/creatures/orn/palms/palm_cixiid.htm.
BUSTILLO, P. A. E.; ARANGO, M. 2016. Las mejores prácticas para detener el avance de la Marchitez letal (ML) en plantaciones de palma de aceite en Colombia. Palmas 37 (4): 75-90.
ARANGO, M.; SIERRA, J.; ALDANA, R; MARTÍNEZ, G. 2011. Efecto de la aplicación de insecticidas y herbicidas en el desarrollo de marchitez letal (ML) de la palma de aceite en el Bajo Upia, Casanare, Colombia. Palmas (Colombia) 32 (1): 11-24.
HOWARD, F. W.; EDWARDS, G. B. 1984. Web- building spiders on coconut palms and their prey. Folia entomológica Mexicana 62: 81-87.
VILLANUEVA, B. J.; PIÑA, R. J. CARRILLO, R. H. 1987. Avances sobre el control y la investigación del amarillamiento letal del cocotero en México. Folleto técnico N° 1. SARH. 19 p.
CARRILLO, R. H.; RAMIREZ, P. J. 1994. Investigación y algunas estrategias de manejo sobre el Amarillamiento Letal del Cocotero en la Península de Yucatán. Folleto técnico. Nov 1994. Centro de Investigación Regional del Sureste. México. 25 p.
BOUCIAS, D. G.; MEYER, M. J.; POPOONSAK, S.; BREAUX, S. E. 2007. The genus Hirsutella: A polyphyletic group of fungal pathogens infecting mites and insects. pp. 1-34. In: Ekesi, S.; Maniania, N. K. (Eds). Use of Entomopathogenic Fungi in Biological Pest Management. Research Signpost. India. 321 p.
ARANGO, M.; OSPINA, C.; SIERRA, J.; MARTÍNEZ, G. 2012. Manejo de la marchitez letal en palma de aceite en zonas de alta incidencia. Palmas (Colombia) 33 (4): 29-40.
LACEY, L. A, GEORGIS, R. 2012. Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. Journal of Nematology 44 (2): 218–225.
GREWAL, P. S.; EHLERS, R. U.; SHAPIRO-ILAN, D. I. 2005. Nematodes as Biocontrol Agents. CABI Publishing, Wallingford, UK. 505 p.
KAYA, H. K. 1990. Soil ecology. pp. 93-115. In: Gaugler R.; Kaya, H. K. (Eds.). Entomopathogenic nematodes in biological control. CRC Press. Boca Raton, Florida. 365 p.
GUO, W.; YAN, X.; ZHAO, G.; HAN, R. 2016. Increased efficacy of entomopathogenic nematode-insecticide combinations against Holotrichia oblita (Coleoptera: Scarabaeidae). Journal of Economic Entomology. 110 (1): 41-51.
LEWIS, E. E.; CLARKE, D. J. 2012. Nematode parasites and entomopathogens. pp. 395-424. In: Vega, F. E.; Kaya, H. K (Eds). Insect pathology, 2nd edn. Elsevier, London.
GLAZER, I. 1996. Survival mechanisms of entomopathogenic nematodes. Biocontrol Science and Technology 6 (3): 373-378.
KAYA, H. K.; KOPPENHÖFER, A. M. 1996. Effects of microbial and other antagonistic organism and competition on entomopathogenic nematodes. Biocontrol Science and Technology 6: 357-371.
AKHURST, R.; SMITH, K. 2002. Regulation and Safety. p. 311- 326. In: Gaugler, R. (Ed.). Entomopathogenic nematology. CAB International, Wallingford. 399 p.
REALPE, A. F. J.; BUSTILLO, P. A. E.; LÓPEZ, N. J. C. 2007. Optimización de la cría de Galleria mellonella (L.) para la producción de nematodos entomopatógenos parásitos de la broca del café. Revista Cenicafé (Colombia) 58 (2): 142-157.
LÓPEZ, N. J. C. 2008. Nematodos para el control de insectos plagas. pp. 150-183. En: Bustillo, P. A. E. (Ed.). Los insectos y su manejo en la caficultura colombiana. FNC - Cenicafé, Chinchiná (Colombia). Editorial Blancolor Ltda., Manizales, 466 p.
KAYA, H. K.; STOCK, S. P. 1997. Techniques in insect nematology. pp. 281-324. In: Lacey, L. A. (Ed.). Manual of techniques in insect pathology. Biological techniques series. Academic Press. San Diego, USA. 409 p.
GAUGLER, R.; LEWIS, E.; STUART, R. J. 1997. Ecology in the service of biological control: the case of entomopathogenic nematodes. Oecologia 109: 483-489.
ROSERO, G. M.; BUSTILLO, P. A. E.; LOPEZ, N. J. C.; CASTRO, V. U.; GOMEZ, L. E. D. 2012. Eficacia de entomonematodos para controlar estados de Aeneolamia varia (Hemiptera: Cercopidae) bajo condiciones de invernadero. Revista Colombiana de Entomología 38 (2): 266-273.
MA, J.; CHEN, S.; MOENS, M.; HAN, R.; CLERCQ. 2013. Efficacy of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) against the chive gnat, Bradysia odoriphaga. Journal of Pest Science 86 (3): 551-561.
EBSSA, L.; KOPPENHÖFER, A. M. 2012. Entomopathogenic nematodes for the management of Agrotis ipsilon: effect of instar, nematode species and nematode production method. Pest Management Science 68 (6): 947-957.
GRIFFIN, C. T. 2015. Behaviour and Population Dynamics of Entomopathogenic Nematodes Following Application. pp 57–95. In: Campos Herrera R (ed). Nematode pathogenesis of insects and other pests—ecology and applied technologies for sustainable plant and crop protection, 1st edn. Springer, Berlin.
POWER, K. T.; AN, R.; GREWAL, P. S. 2009. Effectiveness of Heterorhabditis bacteriophora strain GPS11 applications targeted against different instars of the Japanese beetle Popillia japonica. Biological Control 48: 232–236.
PATIL, J.; RANGASAMY, V. 2018. Field evaluation of the entomopathogenic nematodes against the white grub, Leucopholis lepidophora Blanchard (Coleoptera: Scarabaeidae). Egyptian Journal of Biological Pest Control 28: 41.
GOUDARZI, M.; MOOSAVI, M. R.; ASADI, R. 2015. Effects of entomopathogenic nematodes, Heterorhabditis bacteriophora (Poinar) and Steinernema carpocapsae (Weiser), in biological control of Agrotis segetum (Denis & Schiffermuller) (Lepidoptera: Noctuidae). Türkiye Entomoloji Derneği 39 (3): 239-250.
HÜBNER, A.; ENGLERT, C.; HERZ, A. 2017. Effect of entomopathogenic nematodes on different developmental stages of Drosophila suzukii in and outside fruits. Biological Control 62: 669-680.
LANGFORD, E. A.; NIELSEN, U. N, JOHNSON, S. N.; RIEGLER, M. 2014. Susceptibility of Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae), to entomopathogenic nematodes. Biological Control 69: 34–39.
McCOY, C. W.; STUART, R. J.; DUNCAN, L. W.; NGUYEN, K. 2002. Field efficacy of two commercial preparations of entomopathogenic nematodes against larvae of Diaprepes abbreviates (Coleoptera: Curculionidae) in alfisol type soil. Florida Entomologist. 85 (4): 537–544.
MORENO, S. C. A.; BUSTILLO, P. A. E.; LOPEZ, N. J. C.; CASTRO, V. U.; RAMIREZ, S. G. D. 2012. Virulencia de nematodos entomopatógenos para el control del salivazo Aeneolamia varia (Hemiptera: Cercopidae) en caña de azúcar. Revista Colombiana de Entomología 38 (2): 260-265.
Browse journals by subject